Cosmic shear estimation is an essential scientific goal for large galaxy surveys. It refers to the coherent distortion of distant galaxy images due to weak gravitational lensing along the line of sight. It can be used as a tracer of the matter distribution in the Universe. The unbiased estimation of the local value of the cosmic shear can be obtained via Bayesian analysis which relies on robust estimation of the galaxies ellipticity (shape) posterior distribution. This is not a simple problem as, among other things, the images may be corrupted with strong background noise. For current and coming surveys, another central issue in galaxy shape determination is the treatment of statistically dominant overlapping (blended) objects. We propose a Bayesian Convolutional Neural Network based on Monte-Carlo Dropout to reliably estimate the ellipticity of galaxies and the corresponding measurement uncertainties. We show that while a convolutional network can be trained to correctly estimate well calibrated aleatoric uncertainty, -- the uncertainty due to the presence of noise in the images -- it is unable to generate a trustworthy ellipticity distribution when exposed to previously unseen data (i.e. here, blended scenes). By introducing a Bayesian Neural Network, we show how to reliably estimate the posterior predictive distribution of ellipticities along with robust estimation of epistemic uncertainties. Experiments also show that epistemic uncertainty can detect inconsistent predictions due to unknown blended scenes.
翻译:光剪估算是大型星系勘测的一个基本科学目标。 它指远星系图像的一致扭曲, 其原因是在视觉线上引力透镜微弱。 它可以用作宇宙物质分布的追踪器。 对宇宙剪切的局部值的公正估计可以通过巴伊西亚分析获得, 该分析依赖于对星系椭圆( shape) 后部分布的可靠估计。 这不是一个简单的问题, 因为除其他外, 图像可能会因强烈的背景噪音而腐蚀。 对于当前和即将到来的勘测, 银河系构造中的另一个核心问题是如何处理在统计学上占主导地位的重叠( 模糊) 对象。 我们提议在蒙特卡洛流出的基础上建立一个Bayesian Convolucial神经网络, 以可靠地估计星系的椭圆和相应的测量不确定性。 我们显示, 革命网络可以进行正确的估计, 由图像中存在的噪音导致的不确定性 -- 在暴露于先前的不可见的预测时, 也无法产生可靠的弹性的内层结构分布 。 我们在这里展示的是, 和不可靠的对恒度的图像的映测显示, 的图像的映测。