Adoption of deep neural networks in fields such as economics or finance has been constrained by the lack of interpretability of model outcomes. This paper proposes a generative neural network architecture - the parameter encoder neural network (PENN) - capable of estimating local posterior distributions for the parameters of a regression model. The parameters fully explain predictions in terms of the inputs and permit visualization, interpretation and inference in the presence of complex heterogeneous effects and feature dependencies. The use of Bayesian inference techniques offers an intuitive mechanism to regularize local parameter estimates towards a stable solution, and to reduce noise-fitting in settings of limited data availability. The proposed neural network is particularly well-suited to applications in economics and finance, where parameter inference plays an important role. An application to an asset pricing problem demonstrates how the PENN can be used to explore nonlinear risk dynamics in financial markets, and to compare empirical nonlinear effects to behavior posited by financial theory.
翻译:经济学或金融等领域内深层神经网络的采用因模型结果缺乏可解释性而受到限制。本文件建议建立一个基因神经网络结构,即参数编码神经网络(PENN),能够估计回归模型参数的当地后方分布。参数充分解释了投入的预测,并允许在复杂的多种效应和特征依赖性存在的情况下进行可视化、解释和推论。使用巴耶斯推理技术提供了一个直观机制,使当地参数估计标准化,实现稳定的解决方案,并减少在数据有限的情况下适合噪音的情况。拟议的神经网络特别适合经济和金融方面的应用,而参数推理在其中起着重要作用。资产定价问题的一个应用表明如何利用PENN来探索金融市场的非线性风险动态,并将经验性非线性影响与金融理论所假设的行为进行比较。