In collaborative robotic cells, a human operator and a robot share the workspace in order to execute a common job, consisting of a set of tasks. A proper allocation and scheduling of the tasks for the human and for the robot is crucial for achieving an efficient human-robot collaboration. In order to deal with the dynamic and unpredictable behavior of the human and for allowing the human and the robot to negotiate about the tasks to be executed, a two layers architecture for solving the task allocation and scheduling problem is proposed. The first layer optimally solves the task allocation problem considering nominal execution times. The second layer, which is reactive, adapts online the sequence of tasks to be executed by the robot considering deviations from the nominal behaviors and requests coming from the human and from robot. The proposed architecture is experimentally validated on a collaborative assembly job.


翻译:在合作机器人细胞中,人类操作员和机器人共享工作空间,以便执行一项共同的任务,包括一系列任务。 适当分配和安排人类和机器人的任务对于实现高效的人类-机器人合作至关重要。 为了应对人类的动态和不可预测性行为,以及允许人类和机器人谈判要执行的任务,提出了解决任务分配和时间安排问题的两层结构。 第一层最理想地解决任务分配问题,考虑名义执行时间。 第二层是反应性,在网上调整机器人执行的任务顺序,考虑偏离名义行为和来自人类和来自机器人的要求。 拟议的结构在合作组装工作中进行了实验性验证。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
60+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
Top
微信扫码咨询专知VIP会员