Due to the subtle balance of intermolecular interactions that govern structure-property relations, predicting the stability of crystal structures formed from molecular building blocks is a highly non-trivial scientific problem. A particularly active and fruitful approach involves classifying the different combinations of interacting chemical moieties, as understanding the relative energetics of different interactions enables the design of molecular crystals and fine-tuning their stabilities. While this is usually performed based on the empirical observation of the most commonly encountered motifs in known crystal structures, we propose to apply a combination of supervised and unsupervised machine-learning techniques to automate the construction of an extensive library of molecular building blocks. We introduce a structural descriptor tailored to the prediction of the binding (lattice) energy and apply it to a curated dataset of organic crystals and exploit its atom-centered nature to obtain a data-driven assessment of the contribution of different chemical groups to the lattice energy of the crystal. We then interpret this library using a low-dimensional representation of the structure-energy landscape and discuss selected examples of the insights into crystal engineering that can be extracted from this analysis, providing a complete database to guide the design of molecular materials.
翻译:由于管理结构-财产关系的分子间相互作用的微妙平衡,预测分子构件形成的晶体结构的稳定性是一个高度非三角的科学问题。一个特别积极和富有成效的方法涉及对相互作用化学母体的不同组合进行分类,因为了解不同相互作用的相对能量使得分子晶体的设计能够进行分子晶体的相对能量并微调其稳定性。虽然这项工作通常是根据对已知晶体结构中最常遇到的恒星体的实验性观察进行的,但是我们提议将监督和不受监督的机器学习技术结合起来,将建造一个广泛的分子构件库自动化。我们引入一个结构描述符,专门用来预测结合(激光)的化学母体能量的不同组合,并将其应用于一个有机晶体的圆形数据集,并利用其原子核心性质,以获得数据驱动的评估,评估不同化学组对晶体晶体岩能量的贡献。我们然后利用结构-能源景观的低维度表示来解释这个图书馆,并讨论可以从这一分析中提取的晶体学材料的精度的选定例子。