We prove that a fractional perfect matching in a non-bipartite graph can be written, in polynomial time, as a convex combination of perfect matchings. This extends the Birkhoff-von Neumann Theorem from bipartite to non-bipartite graphs. The greedy algorithm of Birkhoff and von Neumann, which starts with the given fractional perfect matching and successively "removes" from it perfect matchings, with appropriate multipliers, fails in non-bipartite graphs -- removing perfect matchings arbitrarily can lead to a graph that is non-empty but has no perfect matchings. Using odd cuts appropriately saves the day.
翻译:我们证明,非双向图形中的分数完美匹配可以在多元时间作为完美匹配的组合来写成。这把伯克霍夫-冯·纽曼理论从两边的图形扩大到非双边的图形。伯克霍夫和冯·纽曼的贪婪算法从给定的分数完美匹配开始,从它开始,从它开始,从它开始,从它的完美匹配,用适当的乘数,在非双方的图形中失败 -- -- 任意地删除完美匹配可以导致一个非空的但没有完美匹配的图表。使用奇特的剪裁适当节省了一天。