For an unweighted graph on $k$ terminals, Kratsch and Wahlstr\"om constructed a vertex sparsifier with $O(k^3)$ vertices via the theory of representative families on matroids. Since their breakthrough result in 2012, no improvement upon the $O(k^3)$ bound has been found. In this paper, we interpret Kratsch and Wahlstr\"om's result through the lens of Bollob\'as's Two-Families Theorem from extremal combinatorics. This new perspective allows us to close the gap for directed acyclic graphs and obtain a tight bound of $\Theta(k^2)$. Central to our approach is the concept of skew-symmetry from extremal combinatorics, and we derive a similar theory for the representation of skew-symmetric families that may have future applications.
翻译:Kratsch 和 Wahlstr\\"om 在 $k$ 终端上未加权的图表中, Kratsch 和 Wahlstr\"om 通过有代表性的机器人家庭理论, 用O(k)3,3美元建造了一个脊椎封闭器。 自2012年突破以来, 没有发现对美元( k) 约束值的改善。 在本文中, 我们通过 Bollob\'as 的双家庭理论家透镜, 从极端组合分析中解读了 Kratsch 和 Wahlstr\"om 的结果。 这个新视角让我们能够弥合定向循环图形的缺口, 并获得$\ Theta(k) $的紧紧框。 我们方法的核心是极端组合学中的对称性测量概念, 我们为未来可能具有应用的 skeew-symectrial 家庭提供了类似的理论。