Performance of trimap-free image matting methods is limited when trying to decouple the deterministic and undetermined regions, especially in the scenes where foregrounds are semantically ambiguous, chromaless, or high transmittance. In this paper, we propose a novel framework named Privileged Prior Information Distillation for Image Matting (PPID-IM) that can effectively transfer privileged prior environment-aware information to improve the performance of students in solving hard foregrounds. The prior information of trimap regulates only the teacher model during the training stage, while not being fed into the student network during actual inference. In order to achieve effective privileged cross-modality (i.e. trimap and RGB) information distillation, we introduce a Cross-Level Semantic Distillation (CLSD) module that reinforces the trimap-free students with more knowledgeable semantic representations and environment-aware information. We also propose an Attention-Guided Local Distillation module that efficiently transfers privileged local attributes from the trimap-based teacher to trimap-free students for the guidance of local-region optimization. Extensive experiments demonstrate the effectiveness and superiority of our PPID framework on the task of image matting. In addition, our trimap-free IndexNet-PPID surpasses the other competing state-of-the-art methods by a large margin, especially in scenarios with chromaless, weak texture, or irregular objects.
翻译:在试图分解确定性和未确定性区域时,尤其是当前期前景模糊、无染色或传输率高的场景中,没有确定性和未确定性区域的性能是有限的。在本文中,我们提出一个名为“图像定性的原始信息蒸馏”的新颖框架(PPID-IM),这个框架可以有效地转让以往没有偏好的环境意识信息,以提高学生在解决硬源地方面的性能。之前的“三角”信息只规范培训阶段的教师模式,而在实际推断期间,不将东西输入学生网络。为了实现有效的特优交叉模式(即:trimap和RGB)信息蒸馏,我们提出了一个名为“图像蒸馏”的跨层次信息蒸馏(PPPID-IM)模块,这个模块可以加强没有偏差的前期环境意识学生在解决硬源地环境方面的性能表现。我们还提议了一个“注意性指导本地蒸馏”模块,通过无偏差的教师将优劣的地方属性有效地传输到学生网络网络网络网络网络网络网络网络网络网络网络网络网络网络。为了展示大范围测试、高超度的系统优势,特别展示了我们区域图像的超度模型。