Methodological development of the Model-implied Instrumental Variable (MIIV) estimation framework has proved fruitful over the last three decades. Major milestones include Bollen's (1996) original development of the MIIV estimator and its robustness properties for continuous endogenous variable SEMs, the extension of the MIIV estimator to ordered categorical endogenous variables (Bollen \& Maydeu-Olivares, 2007), and the introduction of a Generalized Method of Moments (GMM) estimator (Bollen, Kolenikov \& Bauldry, 2014). This paper furthers these developments by making several unique contributions not present in the prior literature: (1) we use matrix calculus to derive the analytic derivatives of the PIV estimator, (2) we extend the PIV estimator to apply to any mixture of binary, ordinal, and continuous variables, (3) we generalize the PIV model to include intercepts and means, (4) we devise a method to input known threshold values for ordinal observed variables, and (5) we enable a general parameterization that permits the estimation of means, variances, and covariances of the underlying variables to use as input into a SEM analysis with PIV. An empirical example illustrates a mixture of continuous variables and ordinal variables with fixed thresholds. We also include a simulation study to compare the performance of this novel estimator to WLSMV.
翻译:在过去三十年中,示范性工具变量(MIIV)估算框架的方法学发展证明取得了丰硕的成果,主要里程碑包括Bollen(1996年)最初开发MIIV估计值和连续内生变量SEM的稳健性特性,MIIV估计值扩展至订购绝对内生变量(Bollen ⁇ Maydeu-Olivares,2007年),以及采用通用模型(GMM)估测仪(Bollen, Kolenikov ⁇ Bauldry,2014年),本文件进一步推进了这些发展,使先前文献中没有的几项独特贡献:(1) 我们使用矩阵计算法来得出PIV估计内生变量的分析衍生物,(2) 我们扩大PIV估计值以适用于任何二进制、分流和连续变量的混合物混合,(3) 我们推广PIV模型,以包括拦截和手段, (4) 我们设计了一种方法,将已知的数值用于或常态观察到的变量的临界值的临界值输入,以及(5) 我们使得总参数化化,从而能够对VIV的变量进行分析,并用不断的固定变量和共同分析。