Descriptor generation methods using latent representations of encoder$-$decoder (ED) models with SMILES as input are useful because of the continuity of descriptor and restorability to the structure. However, it is not clear how the structure is recognized in the learning progress of ED models. In this work, we created ED models of various learning progress and investigated the relationship between structural information and learning progress. We showed that compound substructures were learned early in ED models by monitoring the accuracy of downstream tasks and input$-$output substructure similarity using substructure$-$based descriptors, which suggests that existing evaluation methods based on the accuracy of downstream tasks may not be sensitive enough to evaluate the performance of ED models with SMILES as descriptor generation methods. On the other hand, we showed that structure restoration was time$-$consuming, and in particular, insufficient learning led to the estimation of a larger structure than the actual one. It can be inferred that determining the endpoint of the structure is a difficult task for the model. To our knowledge, this is the first study to link the learning progress of SMILES by ED model to chemical structures for a wide range of chemicals.
翻译:在这项工作中,我们创建了各种学习进展的ED模型,并调查了结构信息与学习进展之间的关系。我们表明,在ED模型中,通过监测下游任务的准确性和投入值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值比值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值的复合子结构的复合子结构的复合子结构的子结构,因为,因为其输入,因为其输入计算方法意味着,因为其结构的描述说明说明说明说明说明,因为其结构与结构的连续性的连续性和重值值值值值值值值值值值值值值值值和重值值值值值值值值值和重值值值值值值值值值值值值值值值和重值和重值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值</s>