Analyzing programs with loops is a challenging task, suffering from potential issues such as indeterminate number of iterations and exponential growth of control flow complexity. Loop summarization, as a static analysis method for concrete semantic interpretation, receives increasing focuses. It produces symbolic expressions semantically equivalent to the loop program. However, current loop summarization methods are only suitable for single-branch loops or multi-branch loops with simple cycles, without supporting complex loops with irregular branch-to-branch transitions. In this paper, we proposed LoopSCC, a novel loop summarization technique, to achieve concrete semantic interpretation on complex loop. LoopSCC analyzes the control flow at the granularity of single-loop-path and applies the strongly connected components (SCC for short) for contraction and simplification, resulting in the contracted single-loop-path graph (CSG for short). Based on the control flow information provided by the CSG, we can convert the loop summary into a combination of SCC summaries. When an SCC contains irregular branch-to-branch transitions, we propose to explore a convergent range to identify the determinate cycles of different execution paths, referred as oscillatory interval. The loop summarization composed of both iteration conditions and execution operations can eventually be derived recursively. Extensive experiments compared to six state-of-the-art loop interpretation methods are conducted to evaluate the effectiveness of LoopSCC. From the results, LoopSCC outperforms comparative methods in both interpretation accuracy and application effectiveness. Especially, LoopSCC achieves a 100% interpretation accuracy on public common-used benchmark. A systematical study for loop properties on three large-scale programs illustrates that LoopSCC presents outstanding scalability for real-world loop programs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员