Multi-objective optimization (MOO) aims at finding a set of optimal configurations for a given set of objectives. A recent line of work applies MOO methods to the typical Machine Learning (ML) setting, which becomes multi-objective if a model should optimize more than one objective, for instance in fair machine learning. These works also use Multi-Task Learning (MTL) problems to benchmark MOO algorithms treating each task as independent objective. In this work we show that MTL problems do not resemble the characteristics of MOO problems. In particular, MTL losses are not competing in case of a sufficiently expressive single model. As a consequence, a single model can perform just as well as optimizing all objectives with independent models, rendering MOO inapplicable. We provide evidence with extensive experiments on the widely used Multi-Fashion-MNIST datasets. Our results call for new benchmarks to evaluate MOO algorithms for ML. Our code is available at: https://github.com/ruchtem/moo-mtl.


翻译:多目标优化(MOO)旨在为特定一组目标找到一套最佳配置。最近的工作方针将MOO方法应用于典型的机器学习(ML)设置,如果模型优化不止一个目标,例如公平机器学习,这种设置就成为多目标。这些工程还利用多任务学习(MTL)问题来为MOO的算法制定基准,将每项任务视为独立目标。在这项工作中,我们表明MTL问题与MOO问题的特点并不相似。特别是,MTL损失在一个足够明确的单一模型中并不相互竞争。因此,一个单一模型既能以独立模型实现所有目标,又能优化所有目标,使MOO无法适用。我们在广泛使用的多任务-马希恩-MNIST数据集上提供了大量实验的证据。我们的结果要求制定新的基准来评估ML的MOO算法。我们的代码可以在https://github.com/ruchtem/moo-mtl上查阅。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
12+阅读 · 2020年12月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年12月28日
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员