Efficient information retrieval (IR) from building information models (BIMs) poses significant challenges due to the necessity for deep BIM knowledge or extensive engineering efforts for automation. We introduce BIM-GPT, a prompt-based virtual assistant (VA) framework integrating BIM and generative pre-trained transformer (GPT) technologies to support NL-based IR. A prompt manager and dynamic template generate prompts for GPT models, enabling interpretation of NL queries, summarization of retrieved information, and answering BIM-related questions. In tests on a BIM IR dataset, our approach achieved 83.5% and 99.5% accuracy rates for classifying NL queries with no data and 2% data incorporated in prompts, respectively. Additionally, we validated the functionality of BIM-GPT through a VA prototype for a hospital building. This research contributes to the development of effective and versatile VAs for BIM IR in the construction industry, significantly enhancing BIM accessibility and reducing engineering efforts and training data requirements for processing NL queries.
翻译:从建筑信息模型(BIM)中有效地检索信息面临着重大的挑战, 因为需要深入的BIM知识或大量的工程自动化努力. 我们介绍了BIM-GPT, 一种基于提示的虚拟助手(VA)框架, 将BIM和生成式预训练转换器(GPT)技术相结合, 以支持基于自然语言(NL)的IR. 提示管理器和动态模板为GPT模型生成提示, 能够解释NL查询、摘要检索信息, 并回答与BIM相关的问题. 在BIM IR数据集上的测试中, 我们的方法在没有数据和将2%数据纳入提示的情况下分别实现了83.5%和99.5%的准确率. 此外, 我们通过针对一座医院建筑的VA原型验证了BIM-GPT的功能. 该研究为建筑行业开发有效且多功能的BIM IR 虚拟助手做出了贡献, 极大地增强了BIM的可访问性, 减少了处理NL查询所需的工程努力和培训数据的要求.