This paper presents an empirical evaluation of the performance of the Generative Pre-trained Transformer (GPT) model in Harvard's CS171 data visualization course. While previous studies have focused on GPT's ability to generate code for visualizations, this study goes beyond code generation to evaluate GPT's abilities in various visualization tasks, such as data interpretation, visualization design, visual data exploration, and insight communication. The evaluation utilized GPT-3.5 and GPT-4 to complete assignments of CS171, and included a quantitative assessment based on the established course rubrics, a qualitative analysis informed by the feedback of three experienced graders, and an exploratory study of GPT's capabilities in completing border visualization tasks. Findings show that GPT-4 scored 80% on quizzes and homework, and TFs could distinguish between GPT- and human-generated homework with 70% accuracy. The study also demonstrates GPT's potential in completing various visualization tasks, such as data cleanup, interaction with visualizations, and insight communication. The paper concludes by discussing the strengths and limitations of GPT in data visualization, potential avenues for incorporating GPT in broader visualization tasks, and the need to redesign visualization education.


翻译:暂无翻译

1
下载
关闭预览

相关内容

数据可视化是关于数据之视觉表现形式的研究。
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Evaluating the Moral Beliefs Encoded in LLMs
Arxiv
0+阅读 · 2023年7月26日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员