Heart Sound (also known as phonocardiogram (PCG)) analysis is a popular way that detects cardiovascular diseases (CVDs). Most PCG analysis uses supervised way, which demands both normal and abnormal samples. This paper proposes a method of unsupervised PCG analysis that uses beta variational auto-encoder ($\beta-\text{VAE}$) to model the normal PCG signals. The best performed model reaches an AUC (Area Under Curve) value of 0.91 in ROC (Receiver Operating Characteristic) test for PCG signals collected from the same source. Unlike majority of $\beta-\text{VAE}$s that are used as generative models, the best-performed $\beta-\text{VAE}$ has a $\beta$ value smaller than 1. Further experiments then find that the introduction of a light weighted KL divergence between distribution of latent space and normal distribution improves the performance of anomaly PCG detection based on anomaly scores resulted by reconstruction loss. The fact suggests that anomaly score based on reconstruction loss may be better than anomaly scores based on latent vectors of samples
翻译:心声分析( 也称为心电图( PCG) 分析) 是一种常见的检测心血管疾病( CVDs) 的方法。 大部分 PCG 分析使用监督的方式, 需要正常和异常的样本。 本文提出一种不受监督的 PCG 分析方法, 使用乙型变异自动编码器( $\beta-\ text{ VAE}$) 来模拟普通 PCG 信号。 最佳的模型在从同一来源收集的 PCG 信号的 ROC ( 收到者操作特征) 测试中达到 0. 91 的 AUC ( Area 下) 值 。 与大多数 $\ beta- text{ VAE} 不同, 用于基因模型的 $\ beta- text{ { VAE} 的 最佳表现的 PCG 分析方法, 其值小于 1. 进一步实验发现, 引入潜空域分布和正常分布之间的轻加权KL 差异会提高以异常 PCG PCG 根据重建损失得出的异常分数检测的性效果。 。 事实表明, 基于重建损失的反常态损失的反常态分数分数比基于重建的重值可能好于以反向矢量计得得得得更好。