Monitoring of streamed data to detect abnormal behavior (variously known as event detection, anomaly detection, change detection, or outlier detection) underlies many applications of the Internet of Things. Here, we propose a novel framework for event detection in high-dimensional data across a variety of sources, with asynchronous sampling and missing data, to instantly predict abnormal behavior. We assume that normal observations come from a low-rank subspace, prior to being corrupted by a uniformly distributed noise. Correspondingly, we aim to recover a representation of the subspace and perform event detection by running point-to-subspace distance queries on this subspace for incoming data. In particular, we use a variant of low-rank factorisation, which considers interval uncertainty sets around "known entries", on a suitable flattening of the input data to obtain a low-rank model. On-line, we compute the distance of incoming data to the low-rank "normal" subspace and update the subspace to keep it consistent with the seasonal changes present. For the distance computation, we present an algorithm with a one-sided error bounded by a function of the number of coordinates employed. In our experimental evaluation, we have tested the ability of the proposed algorithm to identify samples of abnormal behavior in induction-loop data from Dublin, Ireland.
翻译:用于检测异常行为的流数据监测流数据( 通常被称为事件探测、异常检测、 变化检测、 或异常检测) 在许多应用物联网应用 。 在这里, 我们提出一个新的框架, 用于在各种来源的高维数据中检测事件, 包括非同步抽样和缺失数据, 以便立即预测异常行为。 我们假设正常观测来自低端的子空间, 在被统一分布的噪音腐蚀之前; 相应地, 我们的目标是恢复子空间的表示, 并通过运行此子空间的点到子空间的距离查询进行事件探测。 特别是, 我们使用一个低位计分法, 以考虑“ 已知条目” 周围的间隙不确定性, 用于适当平整输入数据以获得低位模型。 我们在线计算进取数据到低端的“ 正常” 子空间的距离, 并更新子空间以保持当前季节性变化 。 在远程计算中, 我们使用一个由空位偏偏向错误组成的算法, 由坐标数功能来测量。 在测试我们测试的都柏林感应变能力中, 。