Data visualizations summarize high-dimensional distributions in two or three dimensions. Dimensionality reduction entails a loss of information, and what is preserved differs between methods. Existing methods preserve the local or the global geometry of the points, and most techniques do not consider labels. Here we introduce "hypersphere2sphere" (H2S), a new method that aims to visualize not the points, but the relationships between the labeled distributions. H2S fits a hypersphere to each labeled set of points in a high-dimensional space and visualizes each hypersphere as a sphere in 3D (or circle in 2D). H2S perfectly captures the geometry of up to 4 hyperspheres in 3D (or 3 in 2D), and approximates the geometry for larger numbers of distributions, matching the sizes (radii), and the pairwise separations (between-center distances) and overlaps (along the center-connection line). The resulting visualizations are robust to sampling imbalances. Leveraging labels and the sphere as the simplest geometrical primitive, H2S provides an important addition to the toolbox of visualization techniques.


翻译:数据可视化在两个或三个维维度中总结了高维分布。 维度减少意味着信息丢失, 保存的方法也不同。 现有方法保存了点的本地或全球几何, 大多数技术不考虑标签。 在这里我们引入了“ 超视距2 spere2spere”( H2S) 这一新的方法, 目的不是要将点的大小视觉化, 而是标签分布之间的关系。 H2S 适合高维空间中每个标签的一组点的超视距, 并且将每个超视镜作为 3D (或 2D 圆) 的球体进行可视化。 H2S 完美地捕捉了 3D (或 2D 中 3 3 ) 最多4 个超超镜的三维( 2D 3 ) 的几何方法, 并且近于更大数量的分布分布的几何测量, 与大小( radi) 相匹配, 和 双向分离( 中心距离) 和重叠( 与中连接线) 。 相距线 。 由此产生的可视化功能对于取样的不平衡非常可靠。 。 。 将标签和球体作为简单的直观工具提供了重要。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
5+阅读 · 2019年3月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
13+阅读 · 2019年1月26日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
5+阅读 · 2019年3月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员