Identification of the so-called dynamic networks is one of the most challenging problems appeared recently in control literature. Such systems consist of large-scale interconnected systems, also called modules. To recover full networks dynamics the two crucial steps are topology detection, where one has to infer from data which connections are active, and modules estimation. Since a small percentage of connections are effective in many real systems, the problem finds also fundamental connections with group-sparse estimation. In particular, in the linear setting modules correspond to unknown impulse responses expected to have null norm but in a small fraction of samples. This paper introduces a new Bayesian approach for linear dynamic networks identification where impulse responses are described through the combination of two particular prior distributions. The first one is a block version of the horseshoe prior, a model possessing important global-local shrinkage features. The second one is the stable spline prior, that encodes information on smooth-exponential decay of the modules. The resulting model is called stable spline horseshoe (SSH) prior. It implements aggressive shrinkage of small impulse responses while larger impulse responses are conveniently subject to stable spline regularization. Inference is performed by a Markov Chain Monte Carlo scheme, tailored to the dynamic context and able to efficiently return the posterior of the modules in sampled form. We include numerical studies that show how the new approach can accurately reconstruct sparse networks dynamics also when thousands of unknown impulse response coefficients must be inferred from data sets of relatively small size.
翻译:识别所谓的动态网络是最近在控制文献中出现的最具挑战性的问题之一。 这样的系统包括大型的互联系统, 也称为模块。 要恢复完整的网络动态, 有两个关键步骤是地形探测, 需要从数据中推断连接是活跃的, 模块估计。 由于连接比例小, 在许多真实系统中是有效的, 问题还发现与群体偏差估计有基本联系。 特别是, 在线性设置模块中, 直线设置模块与未知的脉冲反应对应, 预计将是无效的, 但样本中只有一小部分。 本文引入了一种新的巴耶西亚方法, 用于线性动态网络识别, 通过两种特定的先前分布组合来描述脉冲反应。 第一个步骤是马蹄之前的块版本, 一个具有重要的全球- 本地缩水特性的模型。 第二个步骤是稳定的样板, 将关于模块平滑度衰减的信息编码为模块。 由此产生的模型被称为稳定的螺旋马峰( SSH) 之前, 它实施小脉冲反应的大胆缩缩方法, 而更大的脉冲反应则容易通过稳定的螺旋图状状图状结构调整。 模型的图解, 由一个稳定的螺旋图状图状图状变整, 我们的图解的图模模型的图解的图模模型的图解, 的图案的图案的图案, 包括了新的图案的图案的图案的图案的图案的图案, 。