In this contribution we device and analyze improved variants of the non-conforming dual approach for trust-region reduced basis (TR-RB) approximation of PDE-constrained parameter optimization that has recently been introduced in [Keil et al.. A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization. arXiv:2006.09297, 2020]. The proposed methods use model order reduction techniques for parametrized PDEs to significantly reduce the computational demand of parameter optimization with PDE constraints in the context of large-scale or multi-scale applications. The adaptive TR approach allows to localize the reduction with respect to the parameter space along the path of optimization without wasting unnecessary resources in an offline phase. The improved variants employ projected Newton methods to solve the local optimization problems within each TR step to benefit from high convergence rates. This implies new strategies in constructing the RB spaces, together with an estimate for the approximation of the hessian. Moreover, we present a new proof of convergence of the TR-RB method based on infinite-dimensional arguments, not restricted to the particular case of an RB approximation and provide an a posteriori error estimate for the approximation of the optimal parameter. Numerical experiments demonstrate the efficiency of the proposed methods.
翻译:在此贡献中,我们设置并分析了最近[Keil 等人(Keil 等人(Keil 等人(Keil 等人(Keil等人))采用的、不兼容的、受限制参数优化的双轨制降低信任区域的基础(TR-RB)近似(PDE-PDE-Forest-Region 减少限制优化的适应性信任区域基础(PDE-Forstation-Region Forstation-Region Forstation Forest press)的双轨制(Arrxiv:2006.09297,2020)]。拟议方法采用模型减少标准(Proform)技术,以在大规模或多尺度应用中,显著减少对PDE限制的参数优化的计算需求。适应性TR-RB方法使得在优化道路上的参数空间减少可以本地化,而不会在离线阶段浪费不必要的资源。改进后,牛顿(Newton)将采用预测的方法来解决每个TR-RB步骤中的当地优化问题,以获益于高汇率。这意味着在构建RB空间的估计数中,同时提出新的战略。此外,我们提出新的证据根据无限的精确的精确度估算,为最佳的模型的精确度提供了一个案例。