In this paper, we propose two simple yet efficient computational algorithms to obtain approximate optimal designs for multi-dimensional linear regression on a large variety of design spaces. We focus on the two commonly used optimal criteria, $D$- and $A$-optimal criteria. For $D$-optimality, we provide an alternative proof for the monotonic convergence for $D$-optimal criterion and propose an efficient computational algorithm to obtain the approximate $D$-optimal design. We further show that the proposed algorithm converges to the $D$-optimal design, and then prove that the approximate $D$-optimal design converges to the continuous $D$-optimal design under certain conditions. For $A$-optimality, we provide an efficient algorithm to obtain approximate $A$-optimal design and conjecture the monotonicity of the proposed algorithm. Numerical comparisons suggest that the proposed algorithms perform well and they are comparable or superior to some existing algorithms.
翻译:在本文中,我们提出了两种简单而有效的计算算法,以获得在众多设计空间上多维线性回归的近似最佳设计。我们侧重于两种常用的最佳标准,即美元和美元。对于美元-最佳标准,我们为美元-最佳标准单调趋同提供了另一种证据,并提出了一个高效的计算算法,以获得大约D$-最佳设计。我们进一步表明,提议的计算算法与美元-最佳设计相融合,然后证明,在一定条件下,大约美元-最佳设计与连续的美元-最佳设计相融合。对于美元-最佳标准,我们提供了一种高效的算法,以获得大约美元-最佳设计,并对拟议算法的单调性作出预测。数字比较表明,拟议的算法表现良好,与某些现有的算法具有可比性或优越性。