We propose a stochastic gradient descent approach with partitioned-truncated singular value decomposition for large-scale inverse problems of magnetic modulus data. Motivated by a uniqueness theorem in gravity inverse problem and realizing the similarity between gravity and magnetic inverse problems, we propose to solve the level-set function modeling the volume susceptibility distribution from the nonlinear magnetic modulus data. To deal with large-scale data, we employ a mini-batch stochastic gradient descent approach with random reshuffling when solving the optimization problem of the inverse problem. We propose a stepsize rule for the stochastic gradient descent according to the Courant-Friedrichs-Lewy condition of the evolution equation. In addition, we develop a partitioned-truncated singular value decomposition algorithm for the linear part of the inverse problem in the context of stochastic gradient descent. Numerical examples illustrate the efficacy of the proposed method, which turns out to have the capability of efficiently processing large-scale measurement data for the magnetic inverse problem. A possible generalization to the inverse problem of deep neural network is discussed at the end.


翻译:我们建议采用悬浮梯度梯度下沉法,采用悬浮梯度梯度下沉法,对磁模量数据产生大规模反向问题进行分流的奇特值分解。我们建议采用分流梯度梯度下沉法,对磁模量数据进行分解。受重力反向问题的独特性定理,并意识到重力和磁反向问题之间的相似性,我们建议用分流梯度梯度下降法,从非线性磁模量数据中找出量度易感性分布的等级定位函数。为了处理大型数据,我们采用小型散点偏差梯度梯度下降法,在解决反向问题的最佳问题时随机调整。我们根据演进方程式的Coulant-Friedrichs-Lewy条件,对悬浮度梯度梯度梯度下降提出一条分级规则。此外,我们为反向问题线部分的线性定值单值分解算法,在分梯度梯度梯度梯度梯度梯度梯度梯度下进行。 数值示例实例说明拟议方法的功效,在解决后,从而产生有效处理磁反向反向问题大规模测测测测度数据的能力。在反向的网络中,可能出现反向的反向问题。

0
下载
关闭预览

相关内容

随机梯度下降,按照数据生成分布抽取m个样本,通过计算他们梯度的平均值来更新梯度。
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员