We propose a stochastic gradient descent approach with partitioned-truncated singular value decomposition for large-scale inverse problems of magnetic modulus data. Motivated by a uniqueness theorem in gravity inverse problem and realizing the similarity between gravity and magnetic inverse problems, we propose to solve the level-set function modeling the volume susceptibility distribution from the nonlinear magnetic modulus data. To deal with large-scale data, we employ a mini-batch stochastic gradient descent approach with random reshuffling when solving the optimization problem of the inverse problem. We propose a stepsize rule for the stochastic gradient descent according to the Courant-Friedrichs-Lewy condition of the evolution equation. In addition, we develop a partitioned-truncated singular value decomposition algorithm for the linear part of the inverse problem in the context of stochastic gradient descent. Numerical examples illustrate the efficacy of the proposed method, which turns out to have the capability of efficiently processing large-scale measurement data for the magnetic inverse problem. A possible generalization to the inverse problem of deep neural network is discussed at the end.
翻译:我们建议采用悬浮梯度梯度下沉法,采用悬浮梯度梯度下沉法,对磁模量数据产生大规模反向问题进行分流的奇特值分解。我们建议采用分流梯度梯度下沉法,对磁模量数据进行分解。受重力反向问题的独特性定理,并意识到重力和磁反向问题之间的相似性,我们建议用分流梯度梯度下降法,从非线性磁模量数据中找出量度易感性分布的等级定位函数。为了处理大型数据,我们采用小型散点偏差梯度梯度下降法,在解决反向问题的最佳问题时随机调整。我们根据演进方程式的Coulant-Friedrichs-Lewy条件,对悬浮度梯度梯度梯度下降提出一条分级规则。此外,我们为反向问题线部分的线性定值单值分解算法,在分梯度梯度梯度梯度梯度梯度梯度梯度下进行。 数值示例实例说明拟议方法的功效,在解决后,从而产生有效处理磁反向反向问题大规模测测测测度数据的能力。在反向的网络中,可能出现反向的反向问题。