Multi-vector retrieval models improve over single-vector dual encoders on many information retrieval tasks. In this paper, we cast the multi-vector retrieval problem as sparse alignment between query and document tokens. We propose AligneR, a novel multi-vector retrieval model that learns sparsified pairwise alignments between query and document tokens (e.g. `dog' vs. `puppy') and per-token unary saliences reflecting their relative importance for retrieval. We show that controlling the sparsity of pairwise token alignments often brings significant performance gains. While most factoid questions focusing on a specific part of a document require a smaller number of alignments, others requiring a broader understanding of a document favor a larger number of alignments. Unary saliences, on the other hand, decide whether a token ever needs to be aligned with others for retrieval (e.g. `kind' from `kind of currency is used in new zealand}'). With sparsified unary saliences, we are able to prune a large number of query and document token vectors and improve the efficiency of multi-vector retrieval. We learn the sparse unary saliences with entropy-regularized linear programming, which outperforms other methods to achieve sparsity. In a zero-shot setting, AligneR scores 51.1 points nDCG@10, achieving a new retriever-only state-of-the-art on 13 tasks in the BEIR benchmark. In addition, adapting pairwise alignments with a few examples (<= 8) further improves the performance up to 15.7 points nDCG@10 for argument retrieval tasks. The unary saliences of AligneR helps us to keep only 20% of the document token representations with minimal performance loss. We further show that our model often produces interpretable alignments and significantly improves its performance when initialized from larger language models.
翻译:多矢量检索模型在许多信息检索任务上改进了单矢量双重编码。 在本文中, 我们将多矢量检索问题投放到查询和文档符号之间的对齐性差。 我们提议对称R, 这是一种新颖的多矢量检索模型, 学习查询和文档符号之间的对齐性对齐性对齐性对齐性对齐性( 例如“ 狗” 对“ puppy ” ) 和 单向单向非突出性能, 反映它们相对重要的检索任务。 我们显示, 以对称符号对齐的对称对齐性调整的宽度往往带来显著的绩效增益。 虽然大多数侧重于文件特定部分的事实性问题需要更少的对齐性, 其它需要更广义理解的文件对齐性对齐性能的对齐性能。 一致性能决定一个比其他的对齐性能对齐性能的对齐性能( 例如Weqournality, 仅用于新新西兰的对等货币对等) 。 在加固性对等的对等非突出性对等的对等中, 我们可以用大量的对调度对等的对调, 15位和文件对等的对等的对质性标值对质性对质性对质对质性能的对质性能的对质性能的对质性能的对质性能的对质性能的对质性能,,, 我们的对质性能的对质性对质性能的对质性能的对质性能的对质性能的对质性能的对质性能的对质性能, 。