We study the average case complexity of the generalized membership problem for subgroups of free groups, and we show that it is orders of magnitude smaller than the worst case complexity of the best known algorithms. This applies to subgroups given by a fixed number of generators as well as to subgroups given by an exponential number of generators. The main idea behind this result is to exploit a generic property of tuples of words, called the central tree property. An application is given to the average case complexity of the relative primitivity problem, using Shpilrain's recent algorithm to decide primitivity, whose average case complexity is a constant depending only on the rank of the ambient free group.
翻译:我们研究了自由群的子群的广义成员问题的平均情况复杂度,并显示它比已知最佳算法的最坏情况复杂度小多个数量级。这适用于由固定数目的生成元给出的子群以及由指数数目的生成元给出的子群。这个结果背后的主要思想是利用元组的一个通用属性,称为中心树属性。给出了一个应用程序,用于相对原始性问题的平均情况复杂度,使用 Shpilrain 的最近算法来决定原始性,其平均情况复杂度是仅依赖于环境自由群的秩的常数。