Deep unfolding networks (DUNs) have proven to be a viable approach to compressive sensing (CS). In this work, we propose a DUN called low-rank CS network (LR-CSNet) for natural image CS. Real-world image patches are often well-represented by low-rank approximations. LR-CSNet exploits this property by adding a low-rank prior to the CS optimization task. We derive a corresponding iterative optimization procedure using variable splitting, which is then translated to a new DUN architecture. The architecture uses low-rank generation modules (LRGMs), which learn low-rank matrix factorizations, as well as gradient descent and proximal mappings (GDPMs), which are proposed to extract high-frequency features to refine image details. In addition, the deep features generated at each reconstruction stage in the DUN are transferred between stages to boost the performance. Our extensive experiments on three widely considered datasets demonstrate the promising performance of LR-CSNet compared to state-of-the-art methods in natural image CS.
翻译:深显网络(DUNs)已被证明是压缩遥感的可行方法。 在这项工作中,我们提议为自然图像 CS 建立一个称为低级 CS 网络(LR-CSNet ) 的DUN 。 真实世界图像补丁通常由低级近似来代表。 LR-CSNet 利用这一属性,在CS 优化任务之前添加低级。 我们利用可变分拆获得相应的迭接优化程序,然后将其转化为新的 DUN 结构。 建筑使用低级生成模块(LRGMs ), 学习低级矩阵因子化, 以及梯度下移和准度绘图(GDP), 以提取高频特性来完善图像细节。 此外, DUN 的每个重建阶段产生的深度特征在两个阶段之间转移, 以提升性能。 我们在三个广泛考虑的数据集上进行广泛的实验, 显示LCSNet与自然图像 CS 中最先进的方法相比,其表现良好。