We propose a framework for learning calibrated uncertainties under domain shifts. We consider the case where the source (training) distribution differs from the target (test) distribution. We detect such domain shifts through the use of a binary domain classifier and integrate it with the task network and train them jointly end-to-end. The binary domain classifier yields a density ratio that reflects the closeness of a target (test) sample to the source (training) distribution. We employ it to adjust the uncertainty of prediction in the task network. This idea of using the density ratio is based on the distributionally robust learning (DRL) framework, which accounts for the domain shift through adversarial risk minimization. We demonstrate that our method generates calibrated uncertainties that benefit many downstream tasks, such as unsupervised domain adaptation (UDA) and semi-supervised learning (SSL). In these tasks, methods like self-training and FixMatch use uncertainties to select confident pseudo-labels for re-training. Our experiments show that the introduction of DRL leads to significant improvements in cross-domain performance. We also demonstrate that the estimated density ratios show agreement with the human selection frequencies, suggesting a positive correlation with a proxy of human perceived uncertainties.
翻译:我们提出了一个在域变中学习校准不确定性的框架。 我们考虑的是, 源( 培训) 分布与目标( 测试) 分布有差异的情况。 我们通过使用二进制域分类器, 检测这种域变, 并将它与任务网络整合起来, 并共同培训它们。 二进制域分类器产生一个密度比率, 反映目标( 测试) 样本与源( 培训) 分布的近距离。 我们使用它来调整任务网络的预测不确定性。 使用密度比率的这种想法是基于分布性强的学习( DRL) 框架, 该框架说明通过对抗风险最小化实现域变。 我们证明, 我们的方法产生了校准的不确定性, 有利于许多下游任务, 如未受监督域适应( UDA) 和半监督学习( SSL ) 。 在这些任务中, 方法, 如自我训练 和 修补方法使用不确定性来选择有自信的假标签进行再培训。 我们的实验显示, DRL 的引入导致跨部性性性表现的重大改进。 我们还证明, 估计的密度比率显示, 显示与人类选择性代号的正相关关系。