We develop a framework for approximating collapsed Gibbs sampling in generative latent variable cluster models. Collapsed Gibbs is a popular MCMC method, which integrates out variables in the posterior to improve mixing. Unfortunately for many complex models, integrating out these variables is either analytically or computationally intractable. We efficiently approximate the necessary collapsed Gibbs integrals by borrowing ideas from expectation propagation. We present two case studies where exact collapsed Gibbs sampling is intractable: mixtures of Student-t's and time series clustering. Our experiments on real and synthetic data show that our approximate sampler enables a runtime-accuracy tradeoff in sampling these types of models, providing results with competitive accuracy much more rapidly than the naive Gibbs samplers one would otherwise rely on in these scenarios.
翻译:我们开发了一个框架,以基因化潜变群集模型来接近崩溃的Gibbs采样。 崩溃的Gibbs是一种流行的MCMC方法,它整合了后院的变量来改进混合。 不幸的是,对于许多复杂的模型来说,将这些变量整合起来要么是分析性的,要么是计算上的难以操作的。 我们通过从预期传播中借用想法来有效地估计必要的崩溃Gibbs集成。 我们提出了两个案例研究,其中精确崩溃的Gibbs采样是难以操作的:学生和时间序列集成的混合物。 我们对真实和合成数据的实验表明,我们粗略的采样器能够在抽样这些类型的模型时序上进行精确的交换,其结果的竞争性比那些天真的Gibs采样者在这些假设中本来会依赖的结果要快得多。