Pre-trained Language Models (PLMs) have shown strong performance in various downstream Natural Language Processing (NLP) tasks. However, PLMs still cannot well capture the factual knowledge in the text, which is crucial for understanding the whole text, especially for document-level language understanding tasks. To address this issue, we propose a novel contrastive learning framework named ERICA in pre-training phase to obtain a deeper understanding of the entities and their relations in text. Specifically, (1) to better understand entities, we propose an entity discrimination task that distinguishes which tail entity can be inferred by the given head entity and relation. (2) Besides, to better understand relations, we employ a relation discrimination task which distinguishes whether two entity pairs are close or not in relational semantics. Experimental results demonstrate that our proposed ERICA framework achieves consistent improvements on several document-level language understanding tasks, including relation extraction and reading comprehension, especially under low resource setting. Meanwhile, ERICA achieves comparable or better performance on sentence-level tasks. We will release the datasets, source codes and pre-trained language models for further research explorations.
翻译:培训前语言模式(PLM)在各种下游自然语言处理(NLP)任务中表现良好,但是,PLM仍然不能很好地掌握文本中的事实知识,而文本中的事实知识对于理解整个文本至关重要,特别是对于文件一级的语言理解任务至关重要。为了解决这一问题,我们提议了一个在培训前阶段称为ERICA的新颖的对比式学习框架,以更深入地了解各实体及其在文本中的关系。具体地说,为了更好地理解各实体,我们提议了一项实体歧视任务,以区分哪个尾巴实体可以由某个实体和关系来推断。 (2) 此外,为了更好地了解关系,我们采用一种关系歧视任务,即区分两个实体对口是否在关系上的语义学方面。实验结果表明,我们拟议的ERICA框架在一些文件一级的语言理解任务上取得了一致的改进,包括关系提取和阅读理解,特别是在低资源环境下。与此同时,ERICA在判决一级的任务上实现了可比或更好的表现。我们将发布数据集、源代码和预先培训的语言模式,以便进一步研究。