Visual classification can be divided into coarse-grained and fine-grained classification. Coarse-grained classification represents categories with a large degree of dissimilarity, such as the classification of cats and dogs, while fine-grained classification represents classifications with a large degree of similarity, such as cat species, bird species, and the makes or models of vehicles. Unlike coarse-grained visual classification, fine-grained visual classification often requires professional experts to label data, which makes data more expensive. To meet this challenge, many approaches propose to automatically find the most discriminative regions and use local features to provide more precise features. These approaches only require image-level annotations, thereby reducing the cost of annotation. However, most of these methods require two- or multi-stage architectures and cannot be trained end-to-end. Therefore, we propose a novel plug-in module that can be integrated to many common backbones, including CNN-based or Transformer-based networks to provide strongly discriminative regions. The plugin module can output pixel-level feature maps and fuse filtered features to enhance fine-grained visual classification. Experimental results show that the proposed plugin module outperforms state-of-the-art approaches and significantly improves the accuracy to 92.77\% and 92.83\% on CUB200-2011 and NABirds, respectively. We have released our source code in Github https://github.com/chou141253/FGVC-PIM.git.


翻译:视觉分类可以分为粗略的、细微的、细微的分类。 粗略的分类代表不同程度的类别,例如猫和狗的分类,而细微的分类则代表在很大程度上相似的分类,例如猫种、鸟类物种和车辆的制造或型号。 与粗略的视觉分类不同,细微的视觉分类往往需要专业专家来标签数据,从而使数据更加昂贵。 为了应对这一挑战,许多方法建议自动找到最受歧视的区域,并使用地方特征来提供更精确的特征。这些方法只需要图像级别的说明,从而降低注释的成本。然而,这些方法大多需要两个或多阶段的结构,无法经过终端到终端培训。 因此,我们提议了一个新的插件模块,可以与许多常见的骨干相结合,包括CNN-CNN或以变压器为基础的网络,以提供强烈的区别性区域。 插件模块可以输出像素级的地貌地图和缩略式的功能,以便分别加强精细度-200-FIB- 和SLOAL-B-B-I-B-B-B-B-Ial-Ial-Ial-Iard-IG-Iard-Iard-Iard-Iard-Iard-IG-B-B-IGrod-B-IGroal-B-B-B-B-B-B-B-B-B-S-I-I-I-I_______________________BAR_BAR_BAR_BAR_BAR制制制制制式。我们结果显示结果显示结果, 和B_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR________________________________________BAR_BAR_BAR_BAR__BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_B_B_BAR_BAR_B_B_B__B_结果,

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员