We prove that persistence diagrams with the p-Wasserstein distance form the universal p-subadditive commutative monoid on an underlying metric space with a distinguished subset. This result applies to persistence diagrams, barcodes, and to multiparameter persistence modules. In addition, the 1-Wasserstein distance satisfies Kantorovich-Rubinstein duality.
翻译:我们证明,P-Wasserstein距离的持久性图构成一个具有不同子集的基基度空间上通用的P-子相向性对流单体。这一结果适用于持久性图、条形码和多参数持久性模块。此外,1-Wasserstein距离还满足了Kantorovich-Rubinstein的双重性。