Financial Distress Prediction plays a crucial role in the economy by accurately forecasting the number and probability of failing structures, providing insight into the growth and stability of a country's economy. However, predicting financial distress for Small and Medium Enterprises is challenging due to their inherent ambiguity, leading to increased funding costs and decreased chances of receiving funds. While several strategies have been developed for effective FCP, their implementation, accuracy, and data security fall short of practical applications. Additionally, many of these strategies perform well for a portion of the dataset but are not adaptable to various datasets. As a result, there is a need to develop a productive prediction model for better order execution and adaptability to different datasets. In this review, we propose a feature selection algorithm for FCP based on element credits and data source collection. Current financial distress prediction models rely mainly on financial statements and disregard the timeliness of organization tests. Therefore, we propose a corporate FCP model that better aligns with industry practice and incorporates the gathering of thin-head component analysis of financial data, corporate governance qualities, and market exchange data with a Relevant Vector Machine. Experimental results demonstrate that this strategy can improve the forecast efficiency of financial distress with fewer characteristic factors.


翻译:金融危机预测在经济中发挥着关键作用,准确预测了失败结构的数目和概率,提供了对一国经济增长与稳定的洞察力。然而,预测中小企业的财政困难因其固有的模糊性而具有挑战性,导致融资成本增加,接受资金的机会减少。虽然已经为有效的金融交易控制制定了若干战略,但其实施、准确性和数据安全都达不到实际应用。此外,许多这些战略对于部分数据集而言表现良好,但不能适应各种数据集。因此,需要开发一个富有成效的预测模型,以便更好地执行和适应不同的数据集。在本次审查中,我们提出基于要素信用和数据来源收集的金融交易控制方案特征选择算法。目前的财务困难预测模型主要依靠财务报表,忽视组织测试的及时性。因此,我们建议采用公司财务危机预测模型,更好地与行业做法保持一致,并纳入对金融数据、公司治理质量和市场交换数据与相关矢量机的光头部分分析。实验结果表明,这一战略能够以较少的特征因素改进财务困难预测效率。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
35+阅读 · 2021年8月2日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员