Variational message passing (VMP), belief propagation (BP) and expectation propagation (EP) have found their wide applications in complex statistical signal processing problems. In addition to viewing them as a class of algorithms operating on graphical models, this paper unifies them under an optimization framework, namely, Bethe free energy minimization with differently and appropriately imposed constraints. This new perspective in terms of constraint manipulation can offer additional insights on the connection between different message passing algorithms and is valid for a generic statistical model. It also founds a theoretical framework to systematically derive message passing variants. Taking the sparse signal recovery (SSR) problem as an example, a low-complexity EP variant can be obtained by simple constraint reformulation, delivering better estimation performance with lower complexity than the standard EP algorithm. Furthermore, we can resort to the framework for the systematic derivation of hybrid message passing for complex inference tasks. Notably, a hybrid message passing algorithm is exemplarily derived for joint SSR and statistical model learning with near-optimal inference performance and scalable complexity.
翻译:变化式信息传递(VMP)、信仰传播(BP)和期望传播(EP)在复杂的统计信号处理问题中发现其广泛的应用。除了将它们视为在图形模型上运行的算法类别之外,本文件还将其统一在一个优化框架之下,即:以不同和适当的方式限制自由能源最小化,采用不同的和适当的限制限制。这种限制操作的新视角可以对不同信息传递算法之间的联系提供更多的洞察力,并且对通用统计模型有效。它还发现一个理论框架,系统生成信息传递变异。以微小的信号恢复问题为例,通过简单的限制重新拟订,提供比标准的 EP算法更复杂的更佳估计性能。此外,我们可以利用一个框架,系统地衍生混合信息传递到复杂的推论任务中。值得注意的是,混合信息传递算法是用于以近于最佳的推断性能和可扩展的复杂性进行联合的安保和统计模型学习的典型。