Many algorithms for maximizing a monotone submodular function subject to a knapsack constraint rely on the natural greedy heuristic. We present a novel refined analysis of this greedy heuristic which enables us to: $(1)$ reduce the enumeration in the tight $(1-e^{-1})$-approximation of [Sviridenko 04] from subsets of size three to two; $(2)$ present an improved upper bound of $0.42945$ for the classic algorithm which returns the better between a single element and the output of the greedy heuristic.


翻译:在受Knapsack限制的情况下最大限度地增加单调子模量功能的许多算法都依赖于自然贪婪的脂质。我们对这一贪婪的脂质进行了新的精细分析,从而使我们能够:1美元减少(1-e ⁇ - ⁇ -1})美元(Sviridenko 04)这一紧凑的三至二级的[Sviridenko 04]的查点;2美元为经典算法提供了4,2945美元的改进上限,该算法在单一元素和贪婪的脂质输出之间回流得更好。

0
下载
关闭预览

相关内容

专知会员服务
78+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
专知会员服务
78+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
相关资讯
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员