We expand upon the simulation study of Setodji et al. (2017) which compared three promising balancing methods when assessing the average treatment effect on the treated for binary treatments: generalized boosted models (GBM), covariate-balancing propensity scores (CBPS), and entropy balance (EB). The study showed that GBM can outperform CBPS and EB when there are likely to be non-linear associations in both the treatment assignment and outcome models and CBPS and EB are fine-tuned to obtain balance only on first order moments. We explore the potential benefit of using higher-order moments in the balancing conditions for CBPS and EB. Our findings showcase that CBPS and EB should, by default, include higher order moments and that focusing only on first moments can result in substantial bias in both CBPS and EB estimated treatment effect estimates that could be avoided by the use of higher moments.
翻译:我们扩展了Setodji等人(2017年)的模拟研究,比较了在评估对二元治疗治疗的平均治疗效果时三种有希望的平衡方法:普遍推进模型(GBM)、共同平衡性运动分数(CBPS)和酶平衡(EB)。 研究显示,当治疗任务分配和结果模型中可能存在非线性协会时,GBM可以优于CBPS和EB, 并且CBPS和EB都经过微调,只在第一顺序时刻才能取得平衡。我们探讨了在CBPS和EB的平衡条件下使用更高顺序时刻的潜在好处。 我们的研究结果表明,CBPS和EB应该默认地包含更高的顺序分数,而且只关注第一时刻,就可以在CBPS和EB的估计治疗效果中造成严重的偏差,而使用更高时刻是可以避免的。