We expand upon the simulation study of Setodji et al. (2017) which compared three promising balancing methods when assessing the average treatment effect on the treated for binary treatments: generalized boosted models (GBM), covariate-balancing propensity scores (CBPS), and entropy balance (EB). The study showed that GBM can outperform CBPS and EB when there are likely to be non-linear associations in both the treatment assignment and outcome models and CBPS and EB are fine-tuned to obtain balance only on first order moments. We explore the potential benefit of using higher-order moments in the balancing conditions for CBPS and EB. Our findings showcase that CBPS and EB should, by default, include higher order moments and that focusing only on first moments can result in substantial bias in both CBPS and EB estimated treatment effect estimates that could be avoided by the use of higher moments.


翻译:我们扩展了Setodji等人(2017年)的模拟研究,比较了在评估对二元治疗治疗的平均治疗效果时三种有希望的平衡方法:普遍推进模型(GBM)、共同平衡性运动分数(CBPS)和酶平衡(EB)。 研究显示,当治疗任务分配和结果模型中可能存在非线性协会时,GBM可以优于CBPS和EB, 并且CBPS和EB都经过微调,只在第一顺序时刻才能取得平衡。我们探讨了在CBPS和EB的平衡条件下使用更高顺序时刻的潜在好处。 我们的研究结果表明,CBPS和EB应该默认地包含更高的顺序分数,而且只关注第一时刻,就可以在CBPS和EB的估计治疗效果中造成严重的偏差,而使用更高时刻是可以避免的。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年9月8日
Causal Inference for Quantile Treatment Effects
Arxiv
0+阅读 · 2021年9月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员