Emotions conveyed through voice and face shape engagement and context in human-AI interaction. Despite rapid progress in omni-modal large language models (LLMs), the holistic evaluation of emotional reasoning with audiovisual cues remains limited. To address this gap, we introduce AV-EMO-Reasoning, a benchmark designed to systematically assess emotional coherence in LLMs. The framework leverages a curated, single- and multi-turn synthetic audiovisual corpus with a real-world set and is assessed under continuous, categorical, and perceptual metrics. Experiments with leading LLMs show that visual cues reliably improve emotional coherence over audio-only baselines. Moreover, LLMs can leverage audio-visual cues to generate more emotion-aware speech. Models exhibit complementary strengths across metric families, indicating that automatic scores capture facets distinct from perceptual judgments. By releasing a systematic evaluation benchmark, AV-EMO-Reasoning offers a reproducible standard for evaluating emotion-aware dialogue and advances toward more natural, adaptive human-AI interaction.
翻译:暂无翻译