Detecting and tracking vehicles in urban scenes is a crucial step in many traffic-related applications as it helps to improve road user safety among other benefits. Various challenges remain unresolved in multi-object tracking (MOT) including target information description, long-term occlusions and fast motion. We propose a multi-vehicle detection and tracking system following the tracking-by-detection paradigm that tackles the previously mentioned challenges. Our MOT method extends an Intersection-over-Union (IOU)-based tracker with vehicle re-identification features. This allows us to utilize appearance information to better match objects after long occlusion phases and/or when object location is significantly shifted due to fast motion. We outperform our baseline MOT method on the UA-DETRAC benchmark while maintaining a total processing speed suitable for online use cases.
翻译:在城市现场检测和跟踪车辆是许多交通相关应用中的一个关键步骤,因为它有助于提高道路使用者的安全性,除其他好处外,它还有助于提高交通用户的安全性。在多目标跟踪(MOT)方面,包括目标信息描述、长期隔离和快速运动,仍然有各种尚未解决的挑战。我们建议采用多车辆检测和跟踪系统,遵循应对上述挑战的逐次跟踪模式。我们的MOT方法扩展了一个基于跨部门-联盟(IOU)的跟踪器,并配有车辆再识别功能。这使我们能够利用外观信息,在长期隔离阶段和/或由于快速移动而导致目标位置大幅移动后,更好地匹配物体。我们在UA-DETRAC基准上超越了我们的基线MOT方法,同时保持适合在线使用案例的总处理速度。