We revisit Nisan's classical pseudorandom generator (PRG) for space-bounded computation (STOC 1990) and its applications in streaming algorithms. We describe a new generator, HashPRG, that can be thought of as a symmetric version of Nisan's generator over larger alphabets. Our generator allows a trade-off between seed length and the time needed to compute a given block of the generator's output. HashPRG can be used to obtain derandomizations with much better update time and \emph{without sacrificing space} for a large number of data stream algorithms, such as $F_p$ estimation in the parameter regimes $p > 2$ and $0 < p < 2$ and CountSketch with tight estimation guarantees as analyzed by Minton and Price (SODA 2014) which assumed access to a random oracle. We also show a recent analysis of Private CountSketch can be derandomized using our techniques. For a $d$-dimensional vector $x$ being updated in a turnstile stream, we show that $\|x\|_{\infty}$ can be estimated up to an additive error of $\varepsilon\|x\|_{2}$ using $O(\varepsilon^{-2}\log(1/\varepsilon)\log d)$ bits of space. Additionally, the update time of this algorithm is $O(\log 1/\varepsilon)$ in the Word RAM model. We show that the space complexity of this algorithm is optimal up to constant factors. However, for vectors $x$ with $\|x\|_{\infty} = \Theta(\|x\|_{2})$, we show that the lower bound can be broken by giving an algorithm that uses $O(\varepsilon^{-2}\log d)$ bits of space which approximates $\|x\|_{\infty}$ up to an additive error of $\varepsilon\|x\|_{2}$. We use our aforementioned derandomization of the CountSketch data structure to obtain this algorithm, and using the time-space trade off of HashPRG, we show that the update time of this algorithm is also $O(\log 1/\varepsilon)$ in the Word RAM model.
翻译:本文重新探讨了Nisan经典伪随机生成器(PRG)在空间受限计算中的应用(STOC 1990)及其在流计算中的应用。我们描述了一种新的生成器HashPRG,它可以被视为大型字符集上Nisan生成器的对称版本。我们的生成器允许在种子长度和计算给定块的生成器输出所需时间之间进行权衡。HashPRG可以用于获得许多数据流算法的去随机化,这些算法具有更好的更新时间,而且\emph{不损失空间}。例如,在$p>2$和$0<p<2$的参数范围内进行的$F_p$估计以及由Minton和Price (SODA 2014)分析的具有严格估计保证的CountSketch,这些算法假设有访问随机预言机。我们还表明,最近一项有关Private CountSketch的分析可以使用我们的技术进行去随机化。对于在转门流中更新的$d$维向量$x$,我们表明可以使用$O(\varepsilon^{-2}\log(1/\varepsilon)\log d)$位空间估计$\|x\|_{\infty}$,从而将其加性误差变为$\varepsilon\|x\|_{2}$。此外,该算法的更新时间在Word RAM模型中为$O(\log 1/\varepsilon)$。我们表明,该算法的空间复杂度是最优的,直到常数因子。然而,对于$\|x\|_{\infty}=\Theta(\|x\|_{2})$的向量$x$,我们表明,可以使用$O(\varepsilon^{-2}\log d)$位空间的算法打破下界,该算法将$\|x\|_{\infty}$近似到$\varepsilon\|x\|_{2}$的误差范围内。我们使用上述去随机化的CountSketch数据结构来获得该算法,并且使用HashPRG的时间-空间权衡来表明该算法的更新时间也为$O(\log 1/\varepsilon)$(在Word RAM模型中)。