In the problem of learning disentangled representations, one of the promising methods is to factorize aggregated posterior by penalizing the total correlation of sampled latent variables. However, this well-motivated strategy has a blind spot: there is a disparity between the sampled latent representation and its corresponding mean representation. In this paper, we provide a theoretical explanation that low total correlation of sampled representation cannot guarantee low total correlation of the mean representation. Indeed, we prove that for the multivariate normal distributions, the mean representation with arbitrarily high total correlation can have a corresponding sampled representation with bounded total correlation. We also propose a method to eliminate this disparity. Experiments show that our model can learn a mean representation with much lower total correlation, hence a factorized mean representation. Moreover, we offer a detailed explanation of the limitations of factorizing aggregated posterior: factor disintegration. Our work indicates a potential direction for future research of disentangled learning.
翻译:在学习分解的表达方式问题中,有希望的方法之一是通过惩罚抽样潜在变量的总相关性来将综合后遗症考虑在内。然而,这种动机良好的战略有一个盲点:抽样的潜在代表方式与其相应的平均代表方式之间存在差异。在本文中,我们从理论上解释抽样代表方式的总相关性低并不能保证平均代表方式的总相关性低。事实上,我们证明,对于多变正常分配方式而言,具有任意高总相关性的平均代表方式可以有一个相应的抽样代表方式,具有约束性的总相关性。我们还提出了消除这种差异的方法。实验表明,我们的模型可以学习一种平均代表方式,其总体相关性低得多,因此是一种因素化的平均代表方式。此外,我们详细解释了将综合后遗症归为因素的局限性:因素解体。我们的工作为未来研究分解式学习提供了可能的方向。