Genomic surveillance of infectious diseases allows monitoring circulating and emerging variants and quantifying their epidemic potential. However, due to the high costs associated with genomic sequencing, only a limited number of samples can be analysed. Thus, it is critical to understand how sampling impacts the information generated. Here, we combine a compartmental model for the spread of COVID-19 (distinguishing several SARS-CoV-2 variants) with different sampling strategies to assess their impact on genomic surveillance. In particular, we compare adaptive sampling, i.e., dynamically reallocating resources between screening at points of entry and inside communities, and constant sampling, i.e., assigning fixed resources to the two locations. We show that adaptive sampling uncovers new variants up to five weeks earlier than constant sampling, significantly reducing detection delays and estimation errors. This advantage is most prominent at low sequencing rates. Although increasing the sequencing rate has a similar effect, the marginal benefits of doing so may not always justify the associated costs. Consequently, it is convenient for countries with comparatively few resources to operate at lower sequencing rates, thereby profiting the most from adaptive sampling. Finally, our methodology can be readily adapted to study undersampling in other dynamical systems.


翻译:对传染病的基因组监测可以监测循环和新出现的变异体,并量化其流行病潜力,然而,由于基因组测序的成本高昂,只能分析数量有限的样本,因此,了解取样如何影响所生成的信息至关重要。在这里,我们将COVID-19(分解若干SARS-COV-2变体)的分散模型与不同的取样战略结合起来,以评估其对基因组监测的影响。特别是,我们比较适应性取样,即在入境点和社区内部的筛选点之间动态地重新分配资源,以及不断取样,即向这两个地点分配固定资源。我们表明,适应性取样发现新的变异体的时间比不断取样早5周,大大减少探测延误和估计错误。这一优势在低排序率方面最为突出。虽然提高测序率具有类似的影响,但这样做的边际效益可能并不总是证明相关的费用是合理的。因此,对于资源相对较少的国家来说,以较低的测序率运作,从而从适应性取样中获得最大收益的国家来说是方便的。最后,我们发现,适应性取样方法可以在其他动态系统中随时适应。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月2日
Arxiv
11+阅读 · 2020年12月2日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员