In this paper, we present a novel communication channel, called the absorption channel, inspired by information transmission in neurons. Our motivation comes from in-vivo nano-machines, emerging medical applications, and brain-machine interfaces that communicate over the nervous system. Another motivation comes from viewing our model as a specific deletion channel, which may provide a new perspective and ideas to study the general deletion channel. For any given finite alphabet, we give codes that can correct absorption errors. For the binary alphabet, the problem is relatively trivial and we can apply binary (multiple-) deletion correcting codes. For single-absorption error, we prove that the Varshamov-Tenengolts codes can provide a near-optimal code in our setting. When the alphabet size $q$ is at least $3$, we first construct a single-absorption correcting code whose redundancy is at most $3\log_q(n)+O(1)$. Then, based on this code and ideas introduced in \cite{Gabrys2022IT}, we give a second construction of single-absorption correcting codes with redundancy $\log_q(n)+12\log_q\log_q(n)+O(1)$, which is optimal up to an $O\left(\log_q\log_q(n)\right)$. Finally, we apply the syndrome compression technique with pre-coding to obtain a subcode of the single-absorption correcting code. This subcode can combat multiple-absorption errors and has low redundancy. For each setup, efficient encoders and decoders are provided.
翻译:在本文中, 我们展示了一个新颖的通信频道, 叫做吸收频道, 受神经元信息传输的启发。 我们的动机来自在微微纳米机器、 新兴医疗应用程序和脑机界面, 以及神经系统的交流。 另一个动机来自将我们的模型看成一个特定的删除频道, 这可能会为研究一般删除频道提供一个新的视角和想法。 对于任何给定的限定字母, 我们给出可以纠正吸收错误的代码。 对于二进制字母来说, 问题相对较小, 我们可以应用二进制( 多级)删除校正代码。 对于单吸附错误, 我们证明 Varshamov- Tenngolts 代码可以在我们设置的设置中提供接近最佳的代码 。 当字母大小至少为 $q$, 我们首先建立一个单一的吸附校正代码, 最多为 3\ log_q( n)+O(1)美元。 然后, 根据\ cite{Gabrysco2022} 引入的代码和概念, 我们可以用一个精度( ligial) $\ log\ ral_ ral_ ad\\ deal_ religlement a.