A timely software update is vital to combat the increasing security vulnerabilities. However, some software vendors may secretly patch their vulnerabilities without creating CVE entries or even describing the security issue in their change log. Thus, it is critical to identify these hidden security patches and defeat potential N-day attacks. Researchers have employed various machine learning techniques to identify security patches in open-source software, leveraging the syntax and semantic features of the software changes and commit messages. However, all these solutions cannot be directly applied to the binary code, whose instructions and program flow may dramatically vary due to different compilation configurations. In this paper, we propose BinGo, a new security patch detection system for binary code. The main idea is to present the binary code as code property graphs to enable a comprehensive understanding of program flow and perform a language model over each basic block of binary code to catch the instruction semantics. BinGo consists of four phases, namely, patch data pre-processing, graph extraction, embedding generation, and graph representation learning. Due to the lack of an existing binary security patch dataset, we construct such a dataset by compiling the pre-patch and post-patch source code of the Linux kernel. Our experimental results show BinGo can achieve up to 80.77% accuracy in identifying security patches between two neighboring versions of binary code. Moreover, BinGo can effectively reduce the false positives and false negatives caused by the different compilers and optimization levels.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员