As two important textual modalities in electronic health records (EHR), both structured data (clinical codes) and unstructured data (clinical narratives) have recently been increasingly applied to the healthcare domain. Most existing EHR-oriented studies, however, either focus on a particular modality or integrate data from different modalities in a straightforward manner, which usually treats structured and unstructured data as two independent sources of information about patient admission and ignore the intrinsic interactions between them. In fact, the two modalities are documented during the same encounter where structured data inform the documentation of unstructured data and vice versa. In this paper, we proposed a Medical Multimodal Pre-trained Language Model, named MedM-PLM, to learn enhanced EHR representations over structured and unstructured data and explore the interaction of two modalities. In MedM-PLM, two Transformer-based neural network components are firstly adopted to learn representative characteristics from each modality. A cross-modal module is then introduced to model their interactions. We pre-trained MedM-PLM on the MIMIC-III dataset and verified the effectiveness of the model on three downstream clinical tasks, i.e., medication recommendation, 30-day readmission prediction and ICD coding. Extensive experiments demonstrate the power of MedM-PLM compared with state-of-the-art methods. Further analyses and visualizations show the robustness of our model, which could potentially provide more comprehensive interpretations for clinical decision-making.
翻译:作为电子健康记录(EHR)中两个重要的文本模式,结构化数据(临床代码)和非结构化数据(临床描述)最近越来越多地应用于医疗保健领域,但大多数现有的以EHR为导向的研究,要么侧重于特定模式,要么以直接方式整合不同模式的数据,通常将结构化和非结构化数据作为关于患者入院的两种独立信息来源,并忽视这两种模式之间的内在互动。事实上,在同一个场合中记录了两种模式,即结构化数据为非结构化数据文件提供参考,反之亦然。在本文中,我们建议采用医学多模式多模式预培训语言模式,名为MedM-PLM,以学习结构化和非结构化数据方面的强化EHR表述,并探索两种模式的相互作用。在MDM-PLM中,两个基于结构化和结构化的神经网络组成部分首先用于学习每种模式的代表性特征。随后引入了一个跨模式模式模式来模拟其互动。我们在MIMIM-III数据集方面经过预先培训的MM-PLM数据模型,并核实了三种下游临床分析模型的有效性,即MM-M-M-M-M-M-C-C-C-revic-vic-vic-s-s-s-view-s-s-s-s-d-d-d-s-s-d-d-dal-d-d-dal-d-dal-d-dal-dalview-s-d-d-dal-dal-dalvivivivivivivivivial-dal-dal-dalvivalvial-s-vivivivial-sal-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-sal-sal-sal-sal-d-d-d-dal-dal-sal-sal-dal-sal-sal-d-s-s-sal-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-slvivivivivivivivivivivivivivial-vial-s-