Fog computing offers increased performance and efficiency for Industrial Internet of Things (IIoT) applications through distributed data processing in nearby proximity to sensors. Given resource constraints and their contentious use in IoT networks, current strategies strive to optimise which data processing tasks should be selected to run on fog devices. In this paper, we advance a more effective data processing architecture for optimisation purposes. Specifically, we consider the distinct functions of sensor data streaming, multi-stream data aggregation and event handling, required by IoT applications for identifying actionable events. We retrofit this event processing pipeline into a logical architecture, structured as a service function tree (SFT), comprising service function chains. We present a novel algorithm for mapping the SFT into a fog network topology in which nodes selected to process SFT functions (microservices) have the requisite resource capacity and network speed to meet their event processing deadlines. We used simulations to validate the algorithm's effectiveness in finding a successful SFT mapping to a physical network. Overall, our approach overcomes the bottlenecks of single service placement strategies for fog computing through composite service placements of SFTs.
翻译:暂无翻译