Recurrent neural networks trained with the backpropagation through time (BPTT) algorithm have led to astounding successes in various temporal tasks. However, BPTT introduces severe limitations, such as the requirement to propagate information backwards through time, the weight symmetry requirement, as well as update-locking in space and time. These problems become roadblocks for AI systems where online training capabilities are vital. Recently, researchers have developed biologically-inspired training algorithms, addressing a subset of those problems. In this work, we propose a novel learning algorithm called online spatio-temporal learning with target projection (OSTTP) that resolves all aforementioned issues of BPTT. In particular, OSTTP equips a network with the capability to simultaneously process and learn from new incoming data, alleviating the weight symmetry and update-locking problems. We evaluate OSTTP on two temporal tasks, showcasing competitive performance compared to BPTT. Moreover, we present a proof-of-concept implementation of OSTTP on a memristive neuromorphic hardware system, demonstrating its versatility and applicability to resource-constrained AI devices.
翻译:采用反向传播算法训练的递归神经网络已经在各种时间任务中取得惊人的成功。然而,BPTT引入了严峻的限制,如需要通过时间反向传播信息,权重对称性要求以及时空更新锁定。这些问题成为AI系统的路障,其中在线培训能力至关重要。最近,研究人员开发了受生物启发的培训算法,解决了这些问题的子集。在这项工作中,我们提出了一种名为在线时空学习的新型学习算法,使用目标投影(OSTTP)解决了BPTT的所有前述问题。特别地,OSTTP赋予网络同时处理和学习新到达的数据的能力,缓解了权重对称性和时空更新锁定问题。我们在两个时间任务上评估OSTTP,展示了与BPTT的竞争性能。此外,我们提供了OSTTP的概念验证实现,展示了其多样性和适用于资源受限的AI设备的可行性。