We design an additive approximation scheme for estimating the cost of the min-weight bipartite matching problem: given a bipartite graph with non-negative edge costs and $\varepsilon > 0$, our algorithm estimates the cost of matching all but $O(\varepsilon)$-fraction of the vertices in truly subquadratic time $O(n^{2-\delta(\varepsilon)})$. Our algorithm has a natural interpretation for computing the Earth Mover's Distance (EMD), up to a $\varepsilon$-additive approximation. Notably, we make no assumptions about the underlying metric (more generally, the costs do not have to satisfy triangle inequality). Note that compared to the size of the instance (an arbitrary $n \times n$ cost matrix), our algorithm runs in {\em sublinear} time. Our algorithm can approximate a slightly more general problem: max-cardinality bipartite matching with a knapsack constraint, where the goal is to maximize the number of vertices that can be matched up to a total cost $B$.
翻译:暂无翻译