The rapid development of artificial intelligence together with the powerful computation capabilities of the advanced edge servers make it possible to deploy learning tasks at the wireless network edge, which is dubbed as edge intelligence (EI). The communication bottleneck between the data resource and the server results in deteriorated learning performance as well as tremendous energy consumption. To tackle this challenge, we explore a new paradigm called learning-and-energy-efficient (LEE) EI, which simultaneously maximizes the learning accuracies and energy efficiencies of multiple tasks via data partition and rate control. Mathematically, this results in a multi-objective optimization problem. Moreover, the continuous varying rates over the whole transmission duration introduce infinite variables. To solve this complex problem, we consider the case with infinite server buffer capacity and one-shot data arrival at sensor. First, the number of variables are reduced to a finite level by exploiting the optimality of constant-rate transmission in each epoch. Second, the optimal solution is found by applying stratified sequencing or objectives merging. By assuming higher priority of learning efficiency in stratified sequencing, the closed form of optimal data partition is derived by the Lagrange method, while the optimal rate control is proved to have the structure of directional water filling (DWF), based on which a string-pulling (SP) algorithm is proposed to obtain the numerical values. The DWF structure of rate control is also proved to be optimal in objectives merging via weighted summation. By exploiting the optimal rate changing properties, the SP algorithm is further extended to account for the cases with limited server buffer capacity or bursty data arrival at sensor. The performance of the proposed design is examined by extensive experiments based on public datasets.


翻译:人工智能的迅速发展,加上先进的边缘服务器的强大计算能力,使得有可能在无线网络边缘部署学习任务,这种网络边缘被称为边缘智能。数据资源与服务器之间的通信瓶颈导致学习性能下降,耗能巨大。为了应对这一挑战,我们探索了一种新的模式,称为学习节能(LEE) EI,它同时通过数据分区和速率控制使多项任务的学习便利度和能效最大化。从数学角度讲,这导致多目标优化问题。此外,整个传输期限的持续不同速度引入了无限变量。为了解决这一复杂问题,我们考虑数据资源与服务器之间的通信瓶颈导致学习性能下降,以及服务器的一次性数据到达传感器。首先,通过利用每个地方的恒定速率传输传输的最佳性能来将变量数量减少到一定的水平。第二,最佳解决方案是通过应用拟议的分级排序或目标合并找到的。假设在进一步排序中学习效率的更高优先度,因此,整个传输时间间隔期间的封闭式数据平衡是用最优的服务器缓冲法来推算出,而最优的SLagrange Ral Seral Ralalalal 也通过Seral 递校算法进行优化的升级控制。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐免费书|MIT出版《Reinforcement Learning: An Introduction》
全球人工智能
3+阅读 · 2017年12月1日
Arxiv
10+阅读 · 2020年11月26日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐免费书|MIT出版《Reinforcement Learning: An Introduction》
全球人工智能
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员