Given two matroids $\mathcal{M}_1 = (V, \mathcal{I}_1)$ and $\mathcal{M}_2 = (V, \mathcal{I}_2)$ over an $n$-element integer-weighted ground set $V$, the weighted matroid intersection problem aims to find a common independent set $S^{*} \in \mathcal{I}_1 \cap \mathcal{I}_2$ maximizing the weight of $S^{*}$. In this paper, we present a simple deterministic algorithm for weighted matroid intersection using $\tilde{O}(nr^{3/4}\log{W})$ rank queries, where $r$ is the size of the largest intersection of $\mathcal{M}_1$ and $\mathcal{M}_2$ and $W$ is the maximum weight. This improves upon the best previously known $\tilde{O}(nr\log{W})$ algorithm given by Lee, Sidford, and Wong [FOCS'15], and is the first subquadratic algorithm for polynomially-bounded weights under the standard independence or rank oracle models. The main contribution of this paper is an efficient algorithm that computes shortest-path trees in weighted exchange graphs.
翻译:给定两个拟阵 $\mathcal{M}_1=(V, \mathcal{I}_1)$ 和 $\mathcal{M}_2 = (V, \mathcal{I}_2)$,它们都是基于一个权重为整数的 $n$ 元素集合 $V$,权重拟阵交问题的目标是要寻找一个最大权重的公共独立集 $S^{*} \in \mathcal{I}_1 \cap \mathcal{I}_2$。在本文中,我们提出了一个简单的确定性算法,使用 $\tilde{O}(nr^{3/4}\log{W})$ 个秩查询来解决权重拟阵交问题,其中 $r$ 是 $\mathcal{M}_1$ 和 $\mathcal{M}_2$ 的最大交集的大小,$W$ 是最大权重。这个算法改进了 Lee、Sidford 和 Wong [FOCS'15] 所提出的最佳算法 $\tilde{O}(nr\log{W})$ 并且是首个在标准独立集或秩查询模型下,计算时多项式约束权重的子二次算法。本文的主要贡献是提出了一种计算加权交换图中最短路径树的高效算法。