Science Information Network (SINET) is a Japanese academic backbone network for more than 800 research institutions and universities. In this paper, we present a multi-GPU-driven pipeline for handling huge session data of SINET. Our pipeline consists of ELK stack, multi-GPU server, and Splunk. A multi-GPU server is responsible for two procedures: discrimination and histogramming. Discrimination is dividing session data into ingoing/outgoing with subnet mask calculation and network address matching. Histogramming is grouping ingoing/outgoing session data into bins with map-reduce. In our architecture, we use GPU for the acceleration of ingress/egress discrimination of session data. Also, we use a tiling design pattern for building a two-stage map-reduce of CPU and GPU. Our multi-GPU-driven pipeline has succeeded in processing huge workloads of about 1.2 to 1.6 billion session streams (500GB-650GB) within 24 hours.
翻译:科学信息网络(SINET)是日本800多个研究机构和大学的学术主干网络。本文中我们展示了一台多GPU驱动的管道,用于处理SINET巨大的会话数据。我们的管道由ELK堆、多GPU服务器和Splunk组成。一个多GPU服务器负责两个程序:歧视和直方图绘制。歧视正在将会话数据分解成正输入/发送数据,并配有子网络掩码计算和网络地址匹配。其图象绘制正在将会话数据分组成带有地图的文件夹。在我们的结构中,我们使用GPU加速会话数据的反向/反向区分。此外,我们使用一个平方块设计模式来建立两阶段的CPU和GPU的地图。我们的多GPU驱动管道在24小时内成功地处理了大约12亿至16亿个会话流(500GB-650GB)的巨大工作量。