Logs are one of the most critical data for service management. It contains rich runtime information for both services and users. Since size of logs are often enormous in size and have free handwritten constructions, a typical log-based analysis needs to parse logs into structured format first. However, we observe that most existing log parsing methods cannot parse logs online, which is essential for online services. In this paper, we present an automatic online log parsing method, name as LogStamp. We extensively evaluate LogStamp on five public datasets to demonstrate the effectiveness of our proposed method. The experiments show that our proposed method can achieve high accuracy with only a small portion of the training set. For example, it can achieve an average accuracy of 0.956 when using only 10% of the data training.
翻译:日志是服务管理最关键的数据之一。 它包含对服务和用户的丰富运行时间信息。 由于日志的大小往往很大,并且有免费手写结构, 典型的日志分析需要首先将日志分析成结构化格式。 然而, 我们观察到, 大多数现有的日志分析方法无法在线分析日志, 而这是在线服务必不可少的。 在本文中, 我们提出了一个自动在线日志分析方法, 名为 LogStamp 。 我们广泛评估了五个公共数据集的日志标本, 以显示我们拟议方法的有效性。 实验显示, 我们建议的方法只有一小部分培训才能达到高精度。 例如, 如果只使用10%的数据培训, 它可以达到平均精确度 0.956 。