Online relevance matching is an essential task of e-commerce product search to boost the utility of search engines and ensure a smooth user experience. Previous work adopts either classical relevance matching models or Transformer-style models to address it. However, they ignore the inherent bipartite graph structures that are ubiquitous in e-commerce product search logs and are too inefficient to deploy online. In this paper, we design an efficient knowledge distillation framework for e-commerce relevance matching to integrate the respective advantages of Transformer-style models and classical relevance matching models. Especially for the core student model of the framework, we propose a novel method using $k$-order relevance modeling. The experimental results on large-scale real-world data (the size is 6$\sim$174 million) show that the proposed method significantly improves the prediction accuracy in terms of human relevance judgment. We deploy our method to the anonymous online search platform. The A/B testing results show that our method significantly improves 5.7% of UV-value under price sort mode.
翻译:在线关联性匹配是电子商务产品搜索的基本任务,目的是提高搜索引擎的效用并确保用户经验的顺利。 以往的工作采用了古典关联性匹配模型或变异型模型来解决这个问题。 但是,它们忽略了电子商务产品搜索日志中普遍存在且效率太低无法在线部署的内在双边图形结构。 在本文中, 我们设计了一个有效的电子商务关联性知识蒸馏框架, 以整合变异型模型和传统关联性模型的各自优势。 特别是对于框架的核心学生模型, 我们提出了一种新颖的方法, 使用美元- 顺序关联性模型。 大规模真实世界数据的实验结果( 规模为 6$\sim 1.74亿美元) 表明, 拟议的方法极大地提高了人类关联性判断的预测准确性。 我们将我们的方法应用到匿名在线搜索平台。 A/ B 测试结果显示, 我们的方法大大改善了价格类型模式下UV值的5.7%。