Supervised learning, while deployed in real-life scenarios, often encounters instances of unknown classes. Conventional algorithms for training a supervised learning model do not provide an option to detect such instances, so they miss-classify such instances with 100% probability. Open Set Recognition (OSR) and Non-Exhaustive Learning (NEL) are potential solutions to overcome this problem. Most existing methods of OSR first classify members of existing classes and then identify instances of new classes. However, many of the existing methods of OSR only makes a binary decision, i.e., they only identify the existence of the unknown class. Hence, such methods cannot distinguish test instances belonging to incremental unseen classes. On the other hand, the majority of NEL methods often make a parametric assumption over the data distribution, which either fail to return good results, due to the reason that real-life complex datasets may not follow a well-known data distribution. In this paper, we propose a new online non-exhaustive learning model, namely, Non-Exhaustive Gaussian Mixture Generative Adversarial Networks (NE-GM-GAN) to address these issues. Our proposed model synthesizes Gaussian mixture based latent representation over a deep generative model, such as GAN, for incremental detection of instances of emerging classes in the test data. Extensive experimental results on several benchmark datasets show that NE-GM-GAN significantly outperforms the state-of-the-art methods in detecting instances of novel classes in streaming data.
翻译:在实际生活中部署的受监督的学习,往往会遇到一些未知的类别。培训受监督的学习模式的常规算法没有提供检测这种情况的选项,因此无法以100%的概率对这种情况进行分类。 Open Set 识别(OSR) 和非Exhaustive Learning(NEL) 是克服这一问题的潜在解决办法。 OSR的大多数现有方法首先对现有类别的成员进行分类,然后确定新类别的例子。然而,OSR的许多现有方法只是作出一个二进制决定,即它们只识别未知类别的存在。因此,这类方法无法区分属于递增的不可见类的测试实例。 另一方面,大多数 NEL 方法往往对数据分布作出参数假设, 要么无法恢复好的结果, 原因是真实的复杂数据集可能不会遵循广为人知的数据分布。 然而,我们在此文件中,我们提出了一个新的在线非详尽的学习模式, 即: Nevative Geneurational Adversari 网络(NENE-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-