The predictive learning of spatiotemporal sequences aims to generate future images by learning from the historical context, where the visual dynamics are believed to have modular structures that can be learned with compositional subsystems. This paper models these structures by presenting PredRNN, a new recurrent network, in which a pair of memory cells are explicitly decoupled, operate in nearly independent transition manners, and finally form unified representations of the complex environment. Concretely, besides the original memory cell of LSTM, this network is featured by a zigzag memory flow that propagates in both bottom-up and top-down directions across all layers, enabling the learned visual dynamics at different levels of RNNs to communicate. It also leverages a memory decoupling loss to keep the memory cells from learning redundant features. We further improve PredRNN with a new curriculum learning strategy, which can be generalized to most sequence-to-sequence RNNs in predictive learning scenarios. We provide detailed ablation studies, gradient analyses, and visualizations to verify the effectiveness of each component. We show that our approach obtains highly competitive results on three standard datasets: the synthetic Moving MNIST dataset, the KTH human action dataset, and a radar echo dataset for precipitation forecasting.


翻译:预测性地瞬间序列的学习旨在通过从历史背景中学习来生成未来图像,据认为视觉动态具有模块结构,可以与组成子系统一起学习。本文通过展示PredRNN这个新的经常性网络来模拟这些结构。PredRNN是一个新的经常性网络,在这个网络中,一对记忆细胞被明确分离,以几乎独立的过渡方式运作,最后形成对复杂环境的统一表述。具体地说,除了LSTM的原始记忆细胞外,这个网络还以一个Zigzag记忆流为特征,该记忆流在每层的自下和自上而下方向上传播,使各个层次的RNNNS能够进行交流,使不同层次的学习视觉动态得以学习。它也利用一个记忆分解性损失来防止记忆细胞学习多余的特性。我们进一步改进PredRNNNNN,采用新的课程学习战略,在预测性学习情景中可以普遍采用大多数顺序到顺序的RNNSNS。我们提供了详细的反向研究、梯度分析以及直观的记忆流,以核实每个组成部分的有效性。我们的方法在三种标准数据中获得了高度竞争性的结果。我们展示了三种标准数据预报数据,即合成数据,即移动数据。

1
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
281+阅读 · 2020年5月8日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
LARNN: Linear Attention Recurrent Neural Network
Arxiv
5+阅读 · 2018年8月16日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员